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Abstract

The problem of a point force acting in a composite, two-dimensional, isotropic elastic half-plane is considered. An

exact solution is obtained, using Mellin transforms and the Melan solution for a point force in a homogeneous half-

plane.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a famous �discussion�, Dundurs (1969) introduced the dimensionless parameters, a and b, that bear his
name. The discussion was of a paper by Bogy (1968) on two isotropic elastic quarter-planes, bonded to-

gether. One might expect that the eigenfunctions for this problem would depend on three dimensionless
parameters (such as the two Poisson ratios and the ratio of the two shear moduli), whereas Dundurs

showed that only two are needed.

We are interested in the same configuration as Bogy, but loaded by a point force inside one of the

quarter-planes. Indeed, as Dundurs (1969) remarked: �One desirable new result ought to be . . .explicit
results for some specific cases of loading. In particular, concentrated unit loads for which the fields are

Green�s functions . . .could be suggested for such an investigation�. Bogy has shown how problems involving

bimaterial wedges, loaded on their faces, can be solved, in principle, using Mellin transforms (Bogy, 1968,

1970, 1971) but, as far as we know, this method has not been used to construct the Green�s function, G.
Bogy (1970) did give results for a point force acting perpendicularly to the boundary of one of the quarter-

planes. Tewary (1991) has constructed G using the Green�s function for the bimaterial full-plane (and

anisotropic materials). His method requires the inversion of a 6� 6 matrix. We use a different method, limit

ourselves to isotropic materials, and have to invert a 4� 4 matrix, which we do explicitly. Our strategy

begins by subtracting Melan�s solution (1932) for a point force in a homogeneous half-plane; this ensures
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that G has the correct singular behaviour. The difference is then calculated using eigenfunction expansions

and Mellin transforms.

The solution of the problem of a point force acting inside one of the quarter-planes can be used to study

the effect of various defects in that quarter-plane, perhaps by setting up a boundary integral equation
over the boundary of the defect. Use of G will mean that only the boundary of the defect has to be dis-

cretised: the effects of both the free surface and the interface have already been included, exactly, in G. Such
a Green�s function will be especially useful when the defect is near the intersection of the free surface and

the bimaterial interface. Problems of this kind, involving an edge crack perpendicular to the free surface,

have been considered in two recent papers. Xu et al. (2001) used a combination of approximate expansions

to estimate the stress-intensity factors. Bae and Krishnaswamy (2001) described experiments with thermal

and mechanical loadings, and compared their results with finite-element computations. By making use of G,
we will be able to analyse cracks of any shape and location within one of the quarter-planes (using a
hypersingular integral equation). Cracks lying in the interface require a different analysis; see, for example,

the paper by Antipov et al. (1997), and references therein.

The plan of the paper is as follows. After formulating the problem in Section 2, we discuss the anti-plane

problem in Section 3. The main purpose is to explain the method before it is used for the much more

complicated plane-strain problem. The method makes use of separated solutions of the governing diffe-

rential equations in wedge-shaped regions, solutions that are free of tractions on one boundary of the

wedge; the plane-strain version of these solutions are constructed in Section 4. Two of these solutions are

combined in Section 5 so as to construct eigenfunctions for composite wedges. The construction of G itself
is given in Section 6.

2. Formulation

Consider an elastic half-plane x > 0, where x, y are Cartesian coordinates. The boundary x ¼ 0 is free

from tractions. A point force is acting at a point P with coordinates ðx0; y0Þ; we assume that x0 > 0 (so that P
is in the solid) and y0 > 0. We want to calculate the Green�s function Gðx; x0Þ, where x ¼ ðx; yÞ and

x0 ¼ ðx0; y0Þ are the position vectors of a typical point in the solid and the point-force location, respectively,

with respect to the origin O. G has components Gij; as usual, Gijðx; x0Þ gives the ith component of the

displacement at x due to a point force acting in the jth direction at x0.

For a homogeneous isotropic half-plane, under plane-strain conditions, the Green�s function is well

known; it was found by Melan (1932) and so we write it as GM. Detailed expressions for GM are given in
Appendix A; see also (Telles and Brebbia, 1981).

We are interested in composite half-planes, made from two isotropic quarter-planes, Q1 and Q2, where Q1

is the first quadrant in the ðx; yÞ-plane (x > 0 and y > 0) and Q2 is the fourth quadrant (x > 0 and y < 0).

Suppose that the solid in Q‘ has Lam�ee moduli k‘ and l‘, and Poisson�s ratio m‘, ‘ ¼ 1; 2. Recall that P is at

x0 2 Q1. Write

Gðx; x0Þ ¼ GMðx; x0Þ þ G1ðx; x0Þ; x 2 Q1;
G2ðx; x0Þ; x 2 Q2;

�
ð2:1Þ

the problem is to calculate G1 and G2. We know that Gðx; x0Þ is singular at x ¼ x0, has zero tractions on the

free surface x ¼ 0, and has continuous displacements and tractions across the interface y ¼ 0. By intro-

ducing GM, we have removed the singularity (G and GM have the same singularities at x0) and we have not

changed the free-surface conditions. However, we have changed the interface conditions: new conditions

relating G1 and G2 across y ¼ 0 will be obtained. We then construct G1 and G2 using polar coordinates and

eigenfunction expansions in each quadrant. (Consequently, our method should extend to (straight) inter-
faces that are not perpendicular to the free surface and to certain composite wedges.)
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3. The anti-plane problem

The scalar, anti-plane problem is relatively easy to solve. We use it to explain our method of solution.

We seek a function Gðx; x0Þ that has a logarithmic singularity at x ¼ x0, satisfies Laplace�s equation in x > 0
and

oG=ox ¼ 0 on x ¼ 0; ð3:1Þ
and is such that G and the corresponding tractions are continuous across the interface y ¼ 0, x > 0; in

addition, the stresses must ! 0 as x2 þ y2 ! 1 with x > 0.

The half-plane solution (satisfying Eq. (3.1)) is

GMðx; x0Þ ¼ logRþ logR0;

where R ¼ jx� x0j ¼ fðx� x0Þ2 þ ðy � y 0Þ2g1=2 and R0 ¼ fðxþ x0Þ2 þ ðy � y0Þ2g1=2. Define

G0ðx0Þ � GMð0; x0Þ ¼ 2 log r0

and eGGMðx; x0Þ � GM � G0 ¼ logðRR0=r0
2Þ:

We write

Gðx; x0Þ ¼ G0ðx0Þ þ
eGGMðx; x0Þ þ G1ðx; x0Þ; x 2 Q1;
G2ðx; x0Þ; x 2 Q2;

�
ð3:2Þ

where G1 and G2 are to be found.

The conditions on G lead to the following conditions on G‘:

r2G‘ ¼ 0 in Q‘; ‘ ¼ 1; 2; ð3:3Þ

ðo=oxÞG1ð0; y; x0Þ ¼ 0 for y > 0; ð3:4Þ

ðo=oxÞG2ð0; y; x0Þ ¼ 0 for y < 0; ð3:5Þ

G1ðx; 0þ; x0Þ � G2ðx; 0�; x0Þ ¼ �eGGMðx; 0; x0Þ; x > 0; ð3:6Þ

l1

oG1

oy
ðx; 0þ; x0Þ � l2

oG2

oy
ðx; 0�; x0Þ ¼ �l1

oGM

oy
ðx; 0; x0Þ; x > 0: ð3:7Þ

In each quarter-plane, we can write down separated solutions in plane polar coordinates, namely

rxU ‘
xðhÞ in Q‘; ‘ ¼ 1; 2;

where U 1
xðhÞ ¼ cosfxðh � 1

2
pÞg, U 2

xðhÞ ¼ cosfxðh þ 1
2
pÞg and x is an arbitrary parameter. These expressions

automatically satisfy Eqs. (3.3)–(3.5). We now consider a superposition of these solutions, and write

G‘ ¼ 1

2pi

Z cþi1

c�i1
A‘ðzÞr�zU ‘

�zðhÞdz in Q‘; ‘ ¼ 1; 2; ð3:8Þ

where A1ðzÞ and A2ðzÞ are to be found, and the contour in the complex z-plane will be chosen later.

Let us write the first interface condition, Eq. (3.6), as

½G�ðxÞ ¼ f ðxÞ; x > 0; ð3:9Þ
where the left-hand side gives the jump, G1 � G2, across y ¼ 0, and f ðxÞ is known. Substituting from Eq.

(3.8) gives
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½G�ðxÞ ¼ 1

2pi

Z cþi1

c�i1
x�z A1ðzÞ

�
� A2ðzÞ

�
cos

pz
2

dz;

using x ¼ r on h ¼ 0. This contour integral is in the form of an inverse Mellin transform (Bleistein and

Handelsman, 1975). Thus, if f ðxÞ has a Mellin transform F ðzÞ, defined by

F ðzÞ ¼
Z 1

0

xz�1f ðxÞdx;

its inverse is given by

f ðxÞ ¼ 1

2pi

Z cþi1

c�i1
x�zF ðzÞdz:

So, Eq. (3.9) gives

fA1ðzÞ � A2ðzÞg cos 1
2

pz ¼ F ðzÞ: ð3:10Þ

Similarly, write the second interface condition, Eq. (3.7), as ½T �ðxÞ ¼ hðxÞ for x > 0, where ½T � denotes the
jump in the tractions and h is given. As ou=oy ¼ r�1ou=oh on h ¼ 0, we obtain

fl1A
1ðzÞ þ l2A

2ðzÞgz sin 1
2

pz ¼ Hðzþ 1Þ: ð3:11Þ

Solving Eqs. (3.10) and (3.11) gives

A1ðzÞ ¼ Hðz
�

þ 1Þ cos 1
2

pzþ l2F ðzÞz sin
1

2
pz
��

DaðzÞ;

A2ðzÞ ¼ Hðz
�

þ 1Þ cos 1
2

pz� l1F ðzÞz sin
1

2
pz
��

DaðzÞ;

where

DaðzÞ ¼
1

2
ðl1 þ l2Þz sin pz:

G‘ can then be found from Eq. (3.8). To evaluate these contour integrals, we have to select c, and this

requires us to know the strips of analyticity of F ðzÞ and HðzÞ. As

f ðxÞ ¼ OðxÞ as x ! 0;
Oðlog xÞ as x ! 1;

�
it follows that F ðzÞ is analytic for �1 < ReðzÞ < 0. (If we had not subtracted G0 from GM, F ðzÞ would not

have existed for any z.) Similarly, we find that

hðxÞ ¼ Oð1Þ as x ! 0;
Oðx�1Þ as x ! 1;

�
so that HðzÞ is analytic for 0 < ReðzÞ < 1. Hence, the parameter c should be chosen with �1 < c < 0.

Let us evaluate F ðzÞ and Hðzþ 1Þ. We have

f ðxÞ ¼ � 1

2
log ðx

hn
� x0Þ2 þ y0

2
i.

r0
2
o
� 1

2
log ðx

hn
þ x0Þ2 þ y 0

2
i.

r0
2
o
:
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After an integration by parts,

F ðzÞ ¼ 1

z

Z 1

0

x� x0

ðx� x0Þ2 þ y 02

(
þ xþ x0

ðxþ x0Þ2 þ y02

)
x z dx

¼ 1

2z

Z 1

0

1

x� w

�
þ 1

x� �ww
þ 1

xþ w
þ 1

xþ �ww

�
x z dx;

where w ¼ x0 þ iy0 ¼ r0eih
0
and �ww ¼ x0 � iy0. Hence, using Eq. (B.3) four times,

F ðzÞ ¼ � pðr0Þz

z sin 1
2
pz

cos
1

2
p

��
� h0

�
z
�
:

Similarly,

Hðzþ 1Þ ¼ l1pðr0Þ
z

cos 1
2
pz

cos
1

2
p

��
� h0

�
z
�
;

whence

A‘ðzÞ ¼ c‘
pðr0Þz

DaðzÞ
cos

1

2
p

��
� h0

�
z
�
;

where c1 ¼ l1 � l2 and c2 ¼ 2l1.

Next, let us evaluate G‘. From Eq. (3.8), we have

G1 ¼ l1 � l2

iðl1 þ l2Þ

Z cþi1

c�i1

r
r0

� ��z cosfð1
2
p � h0Þzg cosfð1

2
p � hÞzg

z sin pz
dz; ð3:12Þ

with �1 < c < 0. The integrand has simple poles at z ¼ �N , N ¼ 1; 2; . . ., with residues

�ð�1ÞN

Np
r
r0

� ��N
cos

1

2
p

��
� h0

�
N
�
cos

1

2
p

��
� h

�
N
�

¼ � 1

2Np
r
r0

� ��N
cosfNðp

h
þ h � h0Þg þ cosfNðh þ h0Þg

i
;

and a double pole at z ¼ 0 with residue p�1 logðr0=rÞ. Moving the inversion contour to the left, we pick up

residue contributions from the poles at z ¼ �N , giving

G1 ¼ � l1 � l2

l1 þ l2

X1
N¼1

1

N
r
r0

� �N
½cosfNðp þ h � h0Þg þ cosfNðh þ h0Þg� ð3:13Þ

¼ l1 � l2

l1 þ l2

flogR1 þ logR2 � 2 log r0g; ð3:14Þ

where R1 ¼ fðxþ x0Þ2 þ ðy þ y0Þ2g1=2, R2 ¼ fðx� x0Þ2 þ ðy þ y 0Þ2g1=2 and we have summed the series in Eq.

(3.13) usingX1
N¼1

XN

N
cosNU ¼ � 1

2
logð1� 2X cosU þ X 2Þ;

the series being convergent for jX j < 1. Exactly the same formula, Eq. (3.14), is obtained by moving the

contour in Eq. (3.12) to the right instead. Similarly, we obtain

G2 ¼ 2l1

l1 þ l2

flogRþ logR0 � 2 log r0g;
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and then Eq. (3.2) gives

Gðx; x0Þ ¼ Gaðx0Þ þ logðRR0Þ þ ½ðl1 � l2Þ=ðl1 þ l2Þ� logðR1R2Þ; x 2 Q1;
½2l1=ðl1 þ l2Þ� logðRR0Þ; x 2 Q2;

�
where Ga ¼ �2½ðl1 � l2Þ=ðl1 þ l2Þ� log r0 is an additive constant (that can be discarded). One can verify

that this expression for G satisfies all the relevant conditions.
In the sequel, we shall use a similar method for the corresponding plane-strain problem.

4. Elastic wedges

In plane polar coordinates r, h, the equilibrium equations for plane-strain deformations are (Graff, 1991,

p. 600)

osrr
or

þ 1

r
osrh
oh

þ srr � shh

r
¼ 0; ð4:1Þ

osrh
or

þ 1

r
oshh

oh
þ 2

r
srh ¼ 0; ð4:2Þ

in the absence of body forces. The stresses are given by Hooke�s law as

srr ¼ ðk þ 2lÞ our
or

þ k
1

r
ouh

oh

�
þ ur

r

�
;

shh ¼ k
our
or

þ ðk þ 2lÞ 1

r
ouh

oh

�
þ ur

r

�
;

srh ¼ l
1

r
our
oh

�
þ ouh

or
� uh

r

�
;

where ur and uh are the radial and angular components, respectively, of the displacement.

We look for solutions of the equilibrium equations in the form

urðr; hÞ ¼ Arxeimðh�h0Þ and uhðr; hÞ ¼ iBrxeimðh�h0Þ;

where A, B, x, m and h0 are constants. Substitution in Eqs. (4.1) and (4.2) gives

½2ð1� mÞðx2 � 1Þ � m2ð1� 2mÞ�Aþ mð3� 4m � xÞB ¼ 0; ð4:3Þ

mð3� 4m þ xÞAþ ½ð1� 2mÞðx2 � 1Þ � 2m2ð1� mÞ�B ¼ 0; ð4:4Þ
using k=l ¼ 2m=ð1� 2mÞ. Setting the determinant of this system to zero gives

m4 � 2m2ðx2 þ 1Þ þ ðx2 � 1Þ2 ¼ 0;

whence m ¼ �ðx þ 1Þ and m ¼ �ðx � 1Þ. Then, Eq. (4.3) gives the following results:

if m ¼ �ðx þ 1Þ; then A ¼ �B;

whereas

if m ¼ �ðx � 1Þ; then ð3� 4m þ xÞA� ð3� 4m � xÞB ¼ 0:
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Hence, combining these four solutions and writing in real form, we obtain

ur ¼ rxfA cosðx þ 1Þw þ B sinðx þ 1Þw þ C cosðx � 1Þw þ D sinðx � 1Þwg;

uh ¼ rxf�A sinðx þ 1Þw þ B cosðx þ 1Þw � CX sinðx � 1Þw þ DX cosðx � 1Þwg;
where A, B, C and D are arbitrary constants,

w ¼ h � h0; X ¼ ðx þ jÞ=ðx � jÞ and j ¼ 3� 4m:

We want solutions that also satisfy

srh ¼ shh ¼ 0 on h ¼ h0ðw ¼ 0Þ: ð4:5Þ
These conditions will be satisfied if

ðx � jÞAþ ðx þ 1ÞC ¼ ðx � jÞBþ ðx � 1ÞD ¼ 0:

Hence, renaming the remaining arbitrary constants, we obtain the following expressions,

ur ¼ rxUxðwÞ and uh ¼ rxVxðwÞ; ð4:6Þ
where

UxðwÞ ¼ Afðx þ 1Þ cosðx þ 1Þw þ ðj � xÞ cosðx � 1Þwg
þ Bfðx � 1Þ sinðx þ 1Þw þ ðj � xÞ sinðx � 1Þwg; ð4:7Þ

VxðwÞ ¼ Af�ðx þ 1Þ sinðx þ 1Þw þ ðj þ xÞ sinðx � 1Þwg
þ Bfðx � 1Þ cosðx þ 1Þw � ðj þ xÞ cosðx � 1Þwg; ð4:8Þ

and A and B are arbitrary constants (that can vary with x). The corresponding stress components are

srh ¼ 2lxrx�1SxðwÞ and shh ¼ 2lxrx�1TxðwÞ;
where

SxðwÞ ¼ Af�ðx þ 1Þ sinðx þ 1Þw þ ðx � 1Þ sinðx � 1Þwg � 2Bðx � 1Þ sinxw sinw;

TxðwÞ ¼ 2Aðx þ 1Þ sinxw sinw þ Bf�ðx � 1Þ sinðx þ 1Þw þ ðx þ 1Þ sinðx � 1Þwg:
Evidently, Sxð0Þ ¼ Txð0Þ ¼ 0 in accordance with Eq. (4.5), for any choice of A, B and x.

Later, we will also need the Cartesian components of the displacement. As ux ¼ ur cos h � uh sin h and

uy ¼ ur sin h þ uh cos h, we obtain

ux ¼ rxXxðw; hÞ and uy ¼ rxYxðw; hÞ; ð4:9Þ
where

Xxðw; hÞ ¼ AU1ðx;w; h; jÞ þ BW1ðx;w; h; jÞ; ð4:10Þ

Yxðw; hÞ ¼ AU2ðx;w; h; jÞ þ BW2ðx;w; h; jÞ; ð4:11Þ

U1ðx;w; h; jÞ ¼ ðx þ 1Þ cosðxw þ w � hÞ þ j cosðxw � w þ hÞ � x cosðxw � w � hÞ; ð4:12Þ

W1ðx;w; h; jÞ ¼ ðx � 1Þ sinðxw þ w � hÞ þ j sinðxw � w þ hÞ � x sinðxw � w � hÞ; ð4:13Þ

U2ðx;w; h; jÞ ¼ �ðx þ 1Þ sinðxw þ w � hÞ þ j sinðxw � w þ hÞ þ x sinðxw � w � hÞ; ð4:14Þ

W2ðx;w; h; jÞ ¼ ðx � 1Þ cosðxw þ w � hÞ � j cosðxw � w þ hÞ � x cosðxw � w � hÞ: ð4:15Þ

P.A. Martin / International Journal of Solids and Structures 40 (2003) 2101–2119 2107



5. Composite elastic wedges

Let us return to the geometry of interest, namely two right-angled wedges, Q1 and Q2. We use the ex-

pansions (4.6), and write

ur ¼ rxU ‘
xðw‘Þ and uh ¼ rxV ‘

xðw‘Þ in Q‘; ‘ ¼ 1; 2;

where w1 ¼ h � 1
2
p, w2 ¼ h þ 1

2
p, and U ‘

x and V ‘
x are defined by Eqs. (4.7) and (4.8), respectively, with co-

efficients A‘ðxÞ, B‘ðxÞ and j‘ ¼ 3� 4m‘, ‘ ¼ 1; 2. The parameter x is unspecified at present.

Next, we calculate the discontinuity in the displacement and traction across the interface at h ¼ 0; later,

these discontinuities will be prescribed, and this will lead to a determination of the coefficients A‘ and B‘.

The desired discontinuities are

½ur� ¼ rxfU 1
xð�1

2
pÞ � U 2

xð12pÞg;

½uh� ¼ rxfV 1
x ð�1

2
pÞ � V 2

x ð12pÞg;

½tr� ¼ 2xrx�1fl1S
1
xð�1

2
pÞ � l2S

2
xð12pÞg;

½th� ¼ 2xrx�1fl1T
1
xð�1

2
pÞ � l2T

2
xð12pÞg:

Straightforward calculation gives

½ur� ¼ rxfðj1 � 1� 2xÞA1 � ðj2 � 1� 2xÞA2g sin 1
2
xp

þ rxfðj1 þ 1� 2xÞB1 þ ðj2 þ 1� 2xÞB2g cos 1
2
xp; ð5:1Þ

½uh� ¼ rxfðj1 þ 1þ 2xÞA1 þ ðj2 þ 1þ 2xÞA2g cos 1
2
xp

þ rxf�ðj1 � 1þ 2xÞB1 þ ðj2 � 1þ 2xÞB2g sin 1
2
xp; ð5:2Þ

½tr� ¼ 4xrx�1fxðl1A
1 þ l2A

2Þ cos 1
2
xp � ðx � 1Þðl1B

1 � l2B
2Þ sin 1

2
xpg; ð5:3Þ

½th� ¼ 4xrx�1fðx þ 1Þðl1A
1 � l2A

2Þ sin 1
2
xp þ xðl1B

1 þ l2B
2Þ cos 1

2
xpg: ð5:4Þ

Setting these four quantities to zero leads to a determinantal equation for x, and the construction of
eigenfunctions for the bimaterial wedge. Explicitly, we obtain

DðxÞa ¼ 0; ð5:5Þ

where a ¼ A1 A2 B1 B2
� �T

,

DðxÞ ¼

�ðj1 � 1� 2xÞS ðj2 � 1� 2xÞS ðj1 þ 1� 2xÞC ðj2 þ 1� 2xÞC

ðj1 þ 1þ 2xÞC ðj2 þ 1þ 2xÞC ðj1 � 1þ 2xÞS �ðj2 � 1þ 2xÞS

4x2l1C 4x2l2C 4xðx � 1Þl1S �4xðx � 1Þl2S

�4xðx þ 1Þl1S 4xðx þ 1Þl2S 4x2l1C 4x2l2C

0BBBBB@

1CCCCCA; ð5:6Þ

S ¼ � sin 1
2
xp and C ¼ cos 1

2
xp. Tedious calculation shows that

detD ¼ �44x2fð1� m1Þl2 þ ð1� m2Þl1g
2DðxÞ; ð5:7Þ
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where

DðxÞ ¼ ðb2 � 1ÞS4 þ f1þ 2x2ða � bÞbgS2 þ x2fx2ða � bÞ2 � a2g ð5:8Þ

and a and b are the Dundurs parameters (Dundurs, 1969), defined by

a ¼ ð1� m1Þl2 � ð1� m2Þl1

ð1� m1Þl2 þ ð1� m2Þl1

and b ¼ ð1� 2m1Þl2 � ð1� 2m2Þl1

2ð1� m1Þl2 þ 2ð1� m2Þl1

:

Expressions for DðxÞ were found previously by Dundurs (1969) and by Bogy (1968, 1970, 1971).

We are interested in the zeros of DðxÞ because they lead to non-trivial solutions of Eq. (5.5) and they

determine the behaviour near r ¼ 0. Note that detD and D are even functions of x, so that we can write

Dð�xnÞ ¼ 0; n ¼ 1; 2; . . . ;

where ReðxnÞ > 0. Some of these zeros have been plotted by Bogy (1971, Fig. 4(c)) as functions of a and b.
In addition, x ¼ 0 is a double zero of DðxÞ: for small x, DðxÞ ’ fðp=2Þ2 � a2gx2 > 0 as jaj < 1 (Dundurs,

1969). This zero at x ¼ 0 corresponds to an eigenfunction that is logarithmically singular as r ! 0.
Inspection of Eq. (5.8) shows that Dð�1Þ ¼ 0. In fact, if x ¼ 1þ e, we have Dð1þ eÞ ’ 2eaða � 2bÞ for

small e. Thus, �1 are double zeros if aða � 2bÞ ¼ 0; this condition was found by Dundurs (1969, Eq. (8a)).

Moreover, if aða � 2bÞ > 0, there must be a (real) zero of DðxÞ between 0 and 1 (because DðxÞ increases
from x ¼ 0 but Dð1Þ ¼ 0 and the slope D0ð1Þ > 0).

6. Construction of Gij

Let G0ðx0Þ ¼ GMð0; x0Þ and eGGMðx; x0Þ ¼ GMðx; x0Þ � G0ðx0Þ. (G0 is given explicitly in Appendix A.)

Change the decomposition (2.1) to

Gðx; x0Þ ¼ G0ðx0Þ þ
eGGMðx; x0Þ þ G1ðx; x0Þ; x 2 Q1;
G2ðx; x0Þ; x 2 Q2

�
ð6:1Þ

(so that the definition of G2 has changed too). We have to calculate G1 and G2. Let the corresponding stress

components be

T ‘
pqj ¼ k‘dpq

o

oxk
G‘

kj þ l‘

o

oxp
G‘

qj

�
þ o

oxq
G‘

pj

�
:

The boundary and interface conditions are

T 1
p1jð0; y; x0Þ ¼ 0; y > 0; ð6:2Þ

T 2
p1jð0; y; x0Þ ¼ 0; y < 0; ð6:3Þ

G1
pjðx; 0þ; x0Þ � G2

pjðx; 0�; x0Þ ¼ �eGGM
pj ðx; 0; x0Þ; x > 0; ð6:4Þ

T 1
p2jðx; 0þ; x0Þ � T 2

p2jðx; 0�; x0Þ ¼ �TM
p2jðx; 0; x0Þ; x > 0; ð6:5Þ

for p ¼ 1; 2 and j ¼ 1; 2. We also require that all the stresses T ‘
pqj ! 0 as x2 þ y2 ! 1 in Q‘.

For j ¼ 1; 2 and ‘ ¼ 1; 2, let G‘
rjðx; x0Þ and G‘

hjðx; x0Þ denote the radial and angular components, res-

pectively, of the displacement at x; we use this mixed formulation because the point force acts in the jth
Cartesian direction at x0 but the displacement is most conveniently written in polar coordinates. Thus, we
write
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G‘
rj ¼

1

2pi

Z cþi1

c�i1
r�zU ‘

�zðw‘Þdz; ð6:6Þ

G‘
hj ¼

1

2pi

Z cþi1

c�i1
r�zV ‘

�zðw‘Þdz; ð6:7Þ

in Q‘, where the unknown coefficients in U ‘
�z and V ‘

�z are A‘
jðzÞ and B‘

jðzÞ. These representations automati-

cally satisfy Eqs. (6.2) and (6.3).
We determine A‘

jðzÞ and B‘
jðzÞ using Eqs. (6.4) and (6.5). Let

fpjðxÞ ¼ �eGGM
pj ðx; 0; x0Þ and hpjðxÞ ¼ �TM

p2jðx; 0; x0Þ; x > 0:

We know that ur ¼ ux, uh ¼ uy , srh ¼ sxy and shh ¼ syy on h ¼ 0. Hence, following the method of Section 3

and making use of Eqs. (5.1)–(5.4), we obtain

Dð�zÞaj ¼ bj; j ¼ 1; 2; ð6:8Þ
where aj ¼ A1

j A2
j B1

j B2
j

� �T
, bj ¼ F1jðzÞ F2jðzÞ H1jðzþ 1Þ H2jðzþ 1Þð ÞT and the 4� 4 matrix D is

defined by Eq. (5.6). FpjðzÞ and HpjðzÞ are the Mellin transforms of fpjðxÞ and hpjðxÞ, respectively; these are

calculated in Appendix B.

The explicit entries in the inverse matrix, ½Dð�zÞ��1
, are given in Appendix C. 1 We can write

½Dð�zÞ��1 ¼ EðzÞ
8ð1� CÞCDðzÞ ; ð6:9Þ

where C ¼ l2=l1, DðzÞ is the Bogy determinant defined by Eq. (5.8), and EðzÞ is the 4� 4 matrix defined in

Appendix C. Thus, solving Eq. (6.8), we obtain

A‘
jðzÞ ¼ R‘

jðzÞ=DðzÞ and B‘
jðzÞ ¼ R‘þ2

j ðzÞ=DðzÞ; ð6:10Þ

where ‘ ¼ 1; 2, j ¼ 1; 2 and

R‘
jðzÞ ¼

1

8ð1� CÞC
X2

p¼1

fE‘pðzÞFpjðzÞ þ E‘;pþ2ðzÞHpjðzþ 1Þg: ð6:11Þ

The matrix EðzÞ is complicated, but each entry is an analytic function of z, except that Ei3 and Ei4,

i ¼ 1; 2; 3; 4, all have a factor of z�1. However, these factors are cancelled by a factor of z in the expressions

for Hpjðzþ 1Þ. It is convenient to make these cancellations, and to identify the singularities of FpjðzÞ and
Hpjðzþ 1Þ. Thus, from the expressions in Appendix B, we can write

FpjðzÞ ¼ KðzÞbFFpjðzÞ and Hpjðzþ 1Þ ¼ l1zKðzÞ bHHpjðzÞ;
where

KðzÞ ¼ ðr0Þz

8l1ð1� m1Þz sin pz
;

x0 ¼ r0 cos h0 and y0 ¼ r0 sin h0. Similarly, from the expressions in Appendix C, we can write

Ei;pþ2ðzÞ ¼ ðl1zÞ
�1bEEipðzÞ; i ¼ 1; 2; 3; 4:

1 This calculation was done by W. Hereman, using Mathematica.
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Hence, we obtain

A‘
jðzÞ ¼

ðr0ÞzbRR‘
jðzÞ

z sin pzDðzÞ and B‘
jðzÞ ¼

ðr0ÞzbRR‘þ2
j ðzÞ

z sin pzDðzÞ ; ð6:12Þ

where ‘ ¼ 1; 2, j ¼ 1; 2, and

bRR‘
jðzÞ ¼

l1

64ðl1 � l2Þl2ð1� m1Þ
X2

p¼1

fE‘pðzÞbFFpjðzÞ þ bEE‘pðzÞ bHHpjðzÞg: ð6:13Þ

In the form of Eq. (6.12), all the singularities are given by zeros of the denominator. Thus, there are poles at

z ¼ �N and at z ¼ �xN , where N ¼ 1; 2; . . . and Dð�xN Þ ¼ 0. In particular, there are double poles at

z ¼ �1 (triple poles if aða � 2bÞ ¼ 0). There is also a double pole at z ¼ 0 (as bRRi
jðzÞ ¼ Oðz2Þ as z ! 0).

Having determined A‘
j and B‘

j, we can construct G‘
pj, the cartesian components of G1 and G2. They are

given by (cf. Eqs. (6.6) and (6.7))

G‘
1j ¼

1

2pi

Z cþi1

c�i1
r�zX ‘

�zðw‘; hÞdz;

G‘
2j ¼

1

2pi

Z cþi1

c�i1
r�zY ‘

�zðw‘; hÞdz;

in Q‘, where X ‘
x and Y ‘

x are given by Eqs. (4.10) and (4.11), respectively, in which A, B and j are replaced by

A‘
j, B

‘
j and j‘, respectively. Making these substitutions, we obtain

G‘
pjðx; x0Þ ¼ 1

2pi

Z cþi1

c�i1
r�zfA‘

jðzÞUpð�z;w‘; h; j‘Þ þ B‘
jðzÞWpð�z;w‘; h; j‘Þgdz; ð6:14Þ

where Up and Wp are defined by Eqs. (4.12)–(4.15). This formula shows the dependence on A‘
j and B‘

j. If we

want to display the singularities in the integrand, we find that we can write G‘
pj concisely in the form

G‘
pjðx; x0Þ ¼ 1

2pi

Z cþi1

c�i1

r0

r

� �z

G‘
pjðz; h; h

0Þ zdz
sin pzDðzÞ ; ð6:15Þ

where G‘
pj are known: they are complicated functions of h and h0, and analytic functions of z.

To evaluate the contour integral in Eq. (6.15), we have to select c. We see that FpjðzÞ is analytic for

�1 < ReðzÞ < 0, H1jðzþ 1Þ is analytic for �2 < ReðzÞ < 1, and H2jðzþ 1Þ is analytic for �1 < ReðzÞ < 1;
their common strip of analyticity is �1 < ReðzÞ < 0. Within this strip, there may be a zero of DðzÞ. Let �x1

be the first zero of DðzÞ to the left of z ¼ 0, so that DðzÞ is free of zeros in the strip �Reðx1Þ < ReðzÞ < 0.

(Recall that Reðx1Þ6 1.) We choose the inversion contour in this strip by choosing c so that

�Reðx1Þ < c < 0:

(We cannot choose c so that �1 < c < �Reðx1Þ when 0 < Reðx1Þ < 1 because this choice would lead to

displacements that are algebraically large, OðrReðx1ÞÞ, as r ! 1.)

6.1. Asymptotic results

The contour integrals in Eqs. (6.14) or (6.15) could be evaluated numerically with the substitution

z ¼ cþ in, giving an infinite integral over n. Alternatively, as in Section 3, one can move the contour,

picking up residue contributions from the various poles. To outline this approach, let us move the contour
to the left, so that the first pole encountered is at z ¼ �x1. Let us assume that aða � 2bÞ > 0 so that x1 6¼ 1.

Substituting from Eq. (6.10) in Eq. (6.14), we obtain
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G‘
pjðx; x0Þ � rx1

8ð1� CÞCD0ð�x1Þ
R‘

jð
n

� x1ÞUpðx1;w‘; h; j‘Þ þ R‘þ2
j ð � x1ÞWpðx1;w‘; h; j‘Þ

o
as r ! 0, where Ri

jðzÞ is defined by Eq. (6.11). This formula gives the behaviour of G‘ near the intersection

of the interface and the free surface. Further terms can be calculated by moving the contour further to the

left. If x1 ¼ 1, there is a double pole at z ¼ �1, so that the leading term would then involve a term pro-

portional to r log r and another proportional to r.
Instead of moving the contour to the left, we can move it to the right. The first singularity encountered is

the double pole at z ¼ 0. In order to compute the residue at this pole, we use the following formulas:

az ¼ 1þ z log aþOðz2Þ, sin pz ¼ pzþOðz3Þ,

DðzÞ ¼ fðp=2Þ2 � a2gz2 þOðz4Þ;

Upð�z;w‘; h; j‘Þ ¼ U‘
p0 þ zU‘

p1 þOðz2Þ;

Wpð�z;w‘; h; j‘Þ ¼ W‘
p0 þ zW‘

p1 þOðz2Þ;

bRRi
jðzÞ ¼ z2bRRi

j2 þ z3bRRi
j3 þOðz4Þ;

as z ! 0, where U‘
p0, U‘

p1, W‘
p0, W‘

p1,
bRRi

j2 and bRRi
j3 can be found by routine Maclaurin expansions. Hence

r�zA‘
jðzÞ ’

bRR‘
j2 þ z logðr0=rÞ þ bRR‘

j3

n o
pfðp=2Þ2 � a2gz2

near z ¼ 0, with a similar approximation for B‘
jðzÞ. Finally, Eq. (6.14) gives

G‘
pjðx; x0Þ ’ �1

pfðp=2Þ2 � a2g
ðU‘

p0

�
þ W‘

p0Þ log
r0

r
þ bRR‘

j2U
‘
p1 þ bRR‘

j3U
‘
p0 þ bRR‘þ2

j2 W‘
p1 þ bRR‘þ2

j3 W‘
p0

�
:

This formula shows that G‘ grows logarithmically as r ! 1, as expected. Again, further terms can be

calculated by moving the contour further to the right; the next term will come from the pole at z ¼ x1.

7. Conclusion

We have shown how the problem of a point force acting in a bimaterial half-plane can be solved exactly;

both anti-plane and plane-strain problems have been solved. For the plane-strain problem, the resulting

formulas for G‘ are complicated, but they are all computable. In practice, it may be adequate to compute a

few residues. Having found G‘, the Green�s function itself is given by Eq. (6.1); note that the singularity in G
is exactly the same as that for the (full-plane) Kelvin solution, GK, which is itself one part of the (half-plane)
Melan solution, GM.

The method used was developed for a half-plane composed of two quarter-planes. However, the method

will extend to problems involving any two wedges bonded together. This extension may be useful for

problems such as a quarter-plane bonded to a half-plane. Extensions of this kind remain for the future.
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Appendix A. The Melan solution

The two-dimensional Kelvin solution for a point force in an infinite plane is GK, with components

GK
ij ðx; x0Þ ¼ g ð3

�
� 4mÞdij log

1

R
þ oR
oxi

oR
oxj

�
;

where R ¼ jx� x0j ¼ fðx� x0Þ2 þ ðy � y0Þ2g1=2, x1 � x, x2 � y and g ¼ ½8plð1� mÞ��1
. This gives the ith

component of the displacement at x due to a point force acting at x0 in the jth direction. The corresponding
stress components are given by

TK
pqj ¼ kdpq

o

oxk
GK

kj þ l
o

oxp
GK

qj

�
þ o

oxq
GK

pj

�
¼ 2lg

R
ð1

�
� 2mÞ dpq

oR
oxj

�
� dqj

oR
oxp

� dpj
oR
oxq

�
� 2

oR
oxj

oR
oxp

oR
oxq

�
: ðA:1Þ

The Melan solution for a point force in a half-plane, GMðx; x0Þ, can be written as

GM ¼ GK þ Gc;

where Gcðx; x0Þ is a non-singular �correction� to account for the traction-free boundary at x ¼ 0. The

components of Gc are defined by

Gc
11 ¼ g

j
R2
0

ðx
�

þ x0Þ2 þ F1

�
; Gc

12 ¼ g
j
R2
0

ðx
�

� x0Þðy � y 0Þ � F2

�
;

Gc
21 ¼ g

j
R2
0

ðx
�

� x0Þðy � y0Þ þ F2

�
; Gc

22 ¼ g
j
R2
0

ðy
�

� y 0Þ2 þ F1

�
;

where j ¼ 3� 4m, R0 ¼ fðxþ x0Þ2 þ ðy � y 0Þ2g1=2,

F1 ¼ A logR0 �
2xx0

R2
0

þ 4xx0

R4
0

ðxþ x0Þ2;

F2 ¼
4xx0

R4
0

ðxþ x0Þðy � y0Þ �B tan�1 y � y0

xþ x0

� �
;

A ¼ j � 8ð1� mÞ2 and B ¼ 4ð1� mÞð1� 2mÞ. Note that our Gc
ij is u

c
ji in (Telles and Brebbia, 1981), and that

Gc
ijðx;x0Þ ¼ Gc

jiðx0; xÞ.
When calculating the corresponding stresses, we use the following formulas:

oF1
ox

¼ 1

R2
0

Aðx
�

þ x0Þ � 2x0 þ 4x0

R2
0

ðxþ x0Þðx0 þ 4xÞ � 16xx0

R4
0

ðxþ x0Þ3
�
;

oF1
oy

¼ y � y 0

R2
0

A

�
þ 4xx0

R2
0

� 16xx0

R4
0

ðxþ x0Þ2
�
;
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oF2
ox

¼ y � y0

R2
0

B

�
þ 4x0

R2
0

ðx0 þ 2xÞ � 16xx0

R4
0

ðxþ x0Þ2
�
;

oF2
oy

¼ xþ x0

R2
0

�
�B� 12xx0

R2
0

þ 16xx0

R4
0

ðxþ x0Þ2
�
:

Using a similar notation to Eq. (A.1), we obtain

T c
121 ¼ 2lg

y � y0

R2
0

1

�
� 2m þ 2

R2
0

½x02 þ xð4mx0 � jxÞ� � 16xx0

R4
0

ðxþ x0Þ2
�
;

T c
111 ¼

2lg
R2
0

ð1
�

� 2mÞðx� x0Þ þ 2

R2
0

ðxþ x0Þ½ � x0
2 þ xf2x0ð1þ 2mÞ � jxg� � 16xx0

R4
0

ðxþ x0Þ3
�
;

T c
221 ¼

2lg
R2
0

ð10m
�

� 7Þxþ ð6m � 1Þx0 þ 2

R2
0

ðxþ x0Þ½ � 3x0
2 þ xfjx� 2x0ð3þ 2mÞg� þ 16xx0

R4
0

ðxþ x0Þ3
�
;

T c
122 ¼

2lg
R2
0

ð6m
�

� 5Þxþ ð2m � 3Þx0 þ 2

R2
0

ðxþ x0Þ½x02 þ xf2x0ð5� 2mÞ þ jxg� � 16xx0

R4
0

ðxþ x0Þ3
�
;

T c
112 ¼ 2lg

y � y0

R2
0

2m

�
� 1þ 2

R2
0

½x02 � xf4ð1� mÞx0 þ jxg� þ 16xx0

R4
0

ðxþ x0Þ2
�
;

T c
222 ¼ 2lg

y � y0

R2
0

6m

�
� 5þ 2

R2
0

½3x02 þ xf4ð2� mÞx0 þ jxg� � 16xx0

R4
0

ðxþ x0Þ2
�
:

The stresses corresponding to GM are given by TM
pqj ¼ TK

pqj þ T c
pqj. As R0 ¼ R on x ¼ 0, it is easy to verify

that TM
p1j ¼ 0 on the half-plane boundary, x ¼ 0, for p ¼ 1; 2 and j ¼ 1; 2, as expected. Also, on the line

y ¼ 0, we find that

TM
p2jðx; 0; x0Þ ¼ Oð1Þ as x ! 0;

Oðx�2Þ as x ! 1;

�
for p ¼ 1; 2 and j ¼ 1; 2:

Let G0ðx0Þ ¼ GMð0; x0Þ. We have

G0
11 ¼ ð2plÞ�1fcos2 h0 � 2ð1� mÞ log r0g; G0

12 ¼ ð2plÞ�1 1
2
sin 2h0

n
� ð1� 2mÞh0

o
;

G0
21 ¼ ð2plÞ�1 1

2
sin 2h0

n
þ ð1� 2mÞh0

o
; G0

22 ¼ ð2plÞ�1fsin2 h0 � 2ð1� mÞ log r0g;

where x0 ¼ r0 cos h0 and y0 ¼ r0 sin h0. For each fixed x0, and for each j, G0
1jðx0Þ and G0

2jðx0Þ are the compo-

nents of a constant displacement vector. Evidently,

eGGMðx;x0Þ � GMðx; x0Þ � G0ðx0Þ

vanishes at x ¼ 0, a fact that will be useful later. In fact, on the line y ¼ 0, we have

GMðx; 0; x0Þ ¼ Oð1Þ as x ! 0;
Oðlog xÞ as x ! 1;

�
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whereas

eGGMðx; 0; x0Þ ¼ OðxÞ as x ! 0;
Oðlog xÞ as x ! 1;

�
this difference will enable us to use Mellin-transform techniques.

Appendix B. Some Mellin transforms

Let us begin with f11ðxÞ ¼ G0
11ðx0Þ � GM

11ðx; 0; x0Þ. From the formulas in Appendix A, we have

f11ðxÞ ¼ g ~ff11ðxÞ þ 2gxx0R�4
0 fy02 � ðxþ x0Þ2g;

where g ¼ ½8pl1ð1� m1Þ��1
,

~ff11ðxÞ ¼ j1 logR�A logR0 � 8ð1� m1Þ2 log r0 þ 4ð1� m1Þ cos2 h0 � ðx� x0Þ2R�2 � j1ðxþ x0Þ2R�2
0 ;

j1 ¼ 3� 4m1; A ¼ j1 � 8ð1� m1Þ2; R ¼ fðx� x0Þ2 þ y0
2g1=2 and R0 ¼ fðxþ x0Þ2 þ y0

2g1=2:
As ~ff11ð0Þ ¼ 0, we can integrate by parts, givingZ 1

0

x z�1 ~ff11ðxÞdx ¼ � 1

z

Z 1

0

x z d

dx
~ff11ðxÞdx; �1 < ReðzÞ < 0: ðB:1Þ

Hence, the Mellin transform of f11ðxÞ is F11ðzÞ, where

FpjðzÞ ¼
g
z

Z 1

0

x zFpjðxÞdx; ðB:2Þ

F11ðxÞ ¼ �j1

x� x0

R2
þA

xþ x0

R2
0

þ 2y0
2 x� x0

R4
þ 2j1y 0

2 xþ x0

R4
0

þ 2z
x0

R4
0

fy 02 � ðxþ x0Þ2g

¼ � j1

2

1

x� w

�
þ 1

x� �ww

�
þA

2

1

xþ w

�
þ 1

xþ �ww

�
þ y 0

2i
1

ðx� wÞ2

(
� 1

ðx� �wwÞ2

)

� j1y0

2i
1

ðxþ wÞ2

(
� 1

ðxþ �wwÞ2

)
� zx0

1

ðxþ wÞ2

(
þ 1

ðxþ �wwÞ2

)
;

w ¼ x0 þ iy0 ¼ r0eih
0
and �ww ¼ x0 � iy0. Then, we can evaluate the integral for F11, Eq. (B.2), using two stan-

dard integrals, namelyZ 1

0

x z

xþ X
dx ¼ � pjX jz

sin pz
eizU; �1 < ReðzÞ < 0; ðB:3Þ

and Z 1

0

x z

ðxþ X Þ2
dx ¼ pzjX jz�1

sin pz
eiðz�1ÞU; �1 < ReðzÞ < 1; ðB:4Þ

where X ¼ jX jeiU and jUj < p. We obtain

F11ðzÞ ¼ KðzÞfj1 cos½zðp � h0Þ� �A cos zh0 � z sin½ðz� 1Þðp � h0Þ� sin h0 � j1z sin½ðz� 1Þh0� sin h0

� 2z2 cos½ðz� 1Þh0� cos h0g;
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where �1 < ReðzÞ < 0 and

KðzÞ ¼ gpðr0Þz

z sin pz
:

Next, we have

f21ðxÞ ¼ g ~ff21ðxÞ þ 4gxx0y 0ðxþ x0ÞR�4
0 ;

where

~ff21ðxÞ ¼ y0ðx� x0ÞfR�2 þ j1R
�2
0 g þ 2ð1� m1Þ sin 2h0 þBfh0 � tan�1½y 0=ðxþ x0Þ�g

and B ¼ 4ð1� m1Þð1� 2m1Þ. Integrating by parts as in Eq. (B.1), we obtain F21ðzÞ in the form of Eq. (B.2),

where

F21ðxÞ ¼ y0
ðx� x0Þ2 � y 0

2

R4

(
� B

R2
0

� j1

1

R2
0

"
� 2

x2 � x0
2

R4
0

#
þ 4zx0

xþ x0

R4
0

)

¼ y0

2

1

ðx� wÞ2

(
þ 1

ðx� �wwÞ2

)
þB

2i
1

xþ w

�
� 1

xþ �ww

�
� ij1

2

x0 þ w

ðxþ wÞ2

(
� x0 þ �ww

ðxþ �wwÞ2

)

þ izx0
1

ðxþ wÞ2

(
� 1

ðxþ �wwÞ2

)
:

Then

F21ðzÞ ¼ KðzÞf�B sin zh0 þ z cos½ðz� 1Þðp � h0Þ� sin h0 þ 2zðj1 � zÞ sin½ðz� 1Þh0� cos h0

þ j1z cos½ðz� 1Þh0� sin h0g; �1 < ReðzÞ < 0:

Similarly,

F12ðzÞ ¼ KðzÞfB sin zh0 þ z cos½ðz� 1Þðp � h0Þ� sin h0 þ 2zðj1 þ zÞ sin½ðz� 1Þh0� cos h0

þ j1z cos½ðz� 1Þh0� sin h0g;

F22ðzÞ ¼ KðzÞfj1 cos½zðp � h0Þ� �A cos zh0 þ z sin½ðz� 1Þðp � h0Þ� sin h0 þ j1z sin½ðz� 1Þh0� sin h0

� 2z2 cos½ðz� 1Þh0� cos h0g:

Let us now examine the tractions on the interface, hpjðxÞ. Making use of the formulas in Appendix A, we

obtain

h11ðxÞ ¼ �TK
121ðx; 0; x0Þ � T c

121ðx; 0; x0Þ

¼ 2il1gð1� m1Þ
1

x� w

�
� 1

x� �ww
� 1

xþ w
þ 1

xþ �ww

�
� l1gy

0 1

ðx� wÞ2

(
þ 1

ðx� �wwÞ2

)

� il1g
3x0 � j1w

ðxþ wÞ2

(
� 3x0 � j1�ww

ðxþ �wwÞ2

)
þ 4il1gx

0 w

ðxþ wÞ3

(
� �ww

ðxþ �wwÞ3

)
:

To compute H11ðzþ 1Þ, we use Eqs. (B.3), (B.4) andZ 1

0

xz

ðxþ X Þ3
dx ¼ � pzðz� 1ÞjX jz�2

2 sin pz
eiðz�2ÞU; �1 < ReðzÞ < 2:
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We find that

H11ðzþ 1Þ ¼ �2l1zKðzÞf2ð1� m1Þðsin½zðp � h0Þ� þ sin zh0Þ þ z cos½ðz� 1Þðp � h0Þ� sin h0

þ j1z sin zh
0 � zð2zþ 1Þ sin½ðz� 1Þh0� cos h0g:

Similarly,

h21ðxÞ ¼ �l1gð1� 2m1Þ
1

x� w

�
þ 1

x� �ww
� 1

xþ w
� 1

xþ �ww

�
þ il1gy

0 1

ðx� wÞ2

(
� 1

ðx� �wwÞ2

)

þ l1g
j1w� x0

ðxþ wÞ2

(
þ j1�ww� x0

ðxþ �wwÞ2

)
þ 4l1gx

0 w

ðxþ wÞ3

(
þ �ww

ðxþ �wwÞ3

)
;

h12ðxÞ ¼ l1gð1� 2m1Þ
1

x� w

�
þ 1

x� �ww
� 1

xþ w
� 1

xþ �ww

�
� il1gy

0 1

ðx� wÞ2

(
� 1

ðx� �wwÞ2

)

þ l1g
j1wþ 3x0

ðxþ wÞ2

(
þ j1�wwþ 3x0

ðxþ �wwÞ2

)
� 4l1gx

0 w

ðxþ wÞ3

(
þ �ww

ðxþ �wwÞ3

)
;

h22ðxÞ ¼ 2il1gð1� m1Þ
1

x� w

�
� 1

x� �ww
� 1

xþ w
þ 1

xþ �ww

�
þ l1gy

0 1

ðx� wÞ2

(
þ 1

ðx� �wwÞ2

)

� il1g
j1wþ x0

ðxþ wÞ2

(
� j1�wwþ x0

ðxþ �wwÞ2

)
þ 4il1gx

0 w

ðxþ wÞ3

(
� �ww

ðxþ �wwÞ3

)
;

whence

H21ðzþ 1Þ ¼ 2l1zKðzÞfð1� 2m1Þðcos½zðp � h0Þ� � cos zh0Þ þ z sin½ðz� 1Þðp � h0Þ� sin h0

þ j1z cos zh
0 � zð2z� 1Þ cos½ðz� 1Þh0� cos h0g;

H12ðzþ 1Þ ¼ 2l1zKðzÞf�ð1� 2m1Þðcos½zðp � h0Þ� � cos zh0Þ � z sin½ðz� 1Þðp � h0Þ� sin h0

þ j1z cos zh
0 þ zð2zþ 1Þ cos½ðz� 1Þh0� cos h0g;

H22ðzþ 1Þ ¼ 2l1zKðzÞf�2ð1� m1Þðsin½zðp � h0Þ� þ sin zh0Þ þ z cos½ðz� 1Þðp � h0Þ� sin h0

þ j1z sin zh
0 þ zð2z� 1Þ sin½ðz� 1Þh0� cos h0g:

(As a simple check, one can verify that the residue of Hpjðzþ 1Þ at z ¼ �1 equals hpjð0Þ.)

Appendix C. An inverse matrix

We require the inverse of the 4� 4 matrix Dð�zÞ, where DðxÞ is defined by Eq. (5.6). Let S ¼ sin 1
2
zp,

C ¼ cos 1
2
zp and C ¼ l2=l1. We find that ½Dð�zÞ��1

can be written as Eq. (6.9), where the matrix E is given

by
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E11 ¼ 4ða � bÞC2SeEE11; E12 ¼ 4ða � bÞC2CeEE12;

E13 ¼ ðl1zÞ
�1CCeEE13; E14 ¼ �ðl1zÞ

�1CSeEE14;

E21 ¼ 4ða � bÞCSeEE21; E22 ¼ �4ða � bÞCCeEE22;

E23 ¼ �ðl1zÞ
�1CeEE23; E24 ¼ �ðl1zÞ

�1SeEE24;

E31 ¼ �4ða � bÞC2CeEE31; E32 ¼ 4ða � bÞC2SeEE32;

E33 ¼ ðl1zÞ
�1CSeEE33; E34 ¼ ðl1zÞ

�1CCeEE34;

E41 ¼ 4ða � bÞCCeEE41; E42 ¼ 4ða � bÞCSeEE42;

E43 ¼ �ðl1zÞ
�1SeEE43; E44 ¼ ðl1zÞ

�1CeEE44;

and the matrix eEE is given byeEE11 ¼ S2fzðb � 1Þ þ bg þ zfz2ða � bÞ � zb � a þ 1g;

eEE12 ¼ S2fzðb � 1Þ � 1g þ z2fzða � bÞ þ ag;

eEE13 ¼ S2f�2ða � bÞC þ ðC � 1Þð1þ aÞð1� bÞ � 2zða � bÞð1� bÞg þ 2z3ða � bÞ2

þ z2ða � bÞf2aC � ðC � 1Þð1þ aÞg � zað1� aÞðC � 1Þ;

eEE14 ¼ S2f2bða � bÞC � ðC � 1Þð1� bÞð2b þ 1� aÞ � 2zða � bÞð1� bÞg þ 2z3ða � bÞ2

þ z2ða � bÞf�2bC þ ðC � 1Þð2b þ 1� aÞg þ zð1� aÞf2ða � bÞC � aðC � 1Þg þ ð1� aÞðC � 1Þ;

eEE21 ¼ S2fzðb þ 1Þ þ bg þ zfz2ða � bÞ � zb � a � 1g;

eEE22 ¼ S2fzðb þ 1Þ þ 1g þ z2fzða � bÞ þ ag;

eEE23 ¼ S2f2ða � bÞC � ðC � 1Þð1� bÞð1þ aÞ þ 2zða � bÞð1þ bÞCg þ 2z3ða � bÞ2C
þ z2ða � bÞf2aC � ðC � 1Þð1þ aÞg � zað1þ aÞðC � 1Þ;

eEE24 ¼ S2f2bða� bÞCþ ðC� 1Þð1� bÞð1þ aÞ þ 2zða� bÞð1þ bÞCgþ 2z3ða� bÞ2C
þ z2ða� bÞf�2bCþ ðC� 1Þð1þ aÞg þ zð1þ aÞf�2ða� bÞCþ ðC� 1Þða� 2bÞg� ð1þ aÞðC� 1Þ;

eEE31 ¼ S2fzðb � 1Þ þ 1g þ z2fzða � bÞ � ag;

eEE32 ¼ S2fzðb � 1Þ � bg þ zfz2ða � bÞ þ zb þ 1� ag;

eEE33 ¼ S2f�2bða � bÞC þ ðC � 1Þð1� bÞð2b þ 1� aÞ � 2zða � bÞð1� bÞg þ 2z3ða � bÞ2

þ z2ða � bÞf2bC � ðC � 1Þð2b þ 1� aÞg þ zð1� aÞf2ða � bÞC � aðC � 1Þg � ð1� aÞðC � 1Þ;

eEE34 ¼ S2f2ða � bÞC � ðC � 1Þð1� bÞð1þ aÞ � 2zða � bÞð1� bÞg þ 2z3ða � bÞ2

þ z2ða � bÞf�2aC þ ðC � 1Þð1þ aÞg � zað1� aÞðC � 1Þ;

eEE41 ¼ S2fzðb þ 1Þ � 1g þ z2fzða � bÞ � ag;
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eEE42 ¼ S2fzðb þ 1Þ � bg þ zfz2ða � bÞ þ zb � 1� ag;

eEE43 ¼ S2f2bða� bÞCþ ðC� 1Þð1� bÞð1þ aÞ � 2zða� bÞð1þ bÞCg � 2z3ða� bÞ2C
þ z2ða� bÞf�2bCþ ðC� 1Þð1þ aÞg þ zð1þ aÞf2ða� bÞCþ ðC� 1Þð2b� aÞg � ð1þ aÞðC� 1Þ;

eEE44 ¼ S2f2ða � bÞC � ðC � 1Þð1� bÞð1þ aÞ � 2zða � bÞð1þ bÞCg � 2z3ða � bÞ2C
þ z2ða � bÞf2aC � ðC � 1Þð1þ aÞg þ zað1þ aÞðC � 1Þ:
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